
Exam Calculus 2

30 March 2016, 14:00-17:00

The exam consists of 6 problems. You have 180 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points.

1. [3+4+4+4 Points.] Let the map f : Rn → R be defined as

x = (x1, . . . , xn) 7→ ‖x‖ =
√
x21 + . . .+ x2n.

(a) Compute the partial derivatives of f at (x1, . . . , xn) 6= (0, . . . , 0).

(b) Show that f is not differentiable at (x1, . . . , xn) = (0, . . . , 0).

(c) In which directions v = (v1, . . . , vn) ∈ Rn, ‖v‖ = 1, do the directional derivatives
of f exist at (x1, . . . , xn) = (0, . . . , 0)?

(d) The Laplacian of a C2 function g : Rn → R is denoted as ∇2g and defined as

∇2g =
∂2g

∂x21
+ . . .+

∂2g

∂x2n
.

Suppose that g(x1, . . . , xn) = h(‖x‖) for some C2 function h : R → R. Show
that for (x1, . . . , xn) 6= (0, . . . , 0), the Laplacian of such a function g is given by

∇2g(x1, . . . , xn) =
n− 1

‖x‖
h′(‖x‖) + h′′(‖x‖).

2. [7+3+5 Points.] Consider the curve parametrized by r : [0, 2π]→ R3 with

r(t) = a cos t i + a sin t j + btk,

where a and b are positive constants.

(a) Determine the parametrization by arc length.

(b) For each point on the curve, determine a unit tangent vector.

(c) At each point on the curve, determine the curvature of the curve.

3. [5+10 Points.] Consider the ellipsoid x2 + 2y2 + 3z2 = 6.

(a) Compute the tangent plane at the point (x, y, z) = (1,−1,−1).

(b) Use the Method of Lagrange Multipliers to find the points on the ellipsoid which
have minimal and maximal distance to the origin.
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4. [5+7+3 Points.]

Let the vector field F : R3 → R3 be defined as F(x, y, z) = (2xy+z3) i+x2 j+3xz2 k.

(a) Show that F is conservative.

(b) Determine a potential function for F.

(c) Compute the line integral of F along the straight line segment from the point
(1,−2, 1) to the point (3, 1, 4).

5. [15 Points.]

Verify Stokes’ Theorem for the surface S defined as x2 + y2 + 5z = 1, z ≥ 0, oriented
by the upward normal and the vector field F(x, y, z) = xz i + yz j + (x2 + y2)k.

6. [7+8 Points.]

For (x, y, z) 6= (0, 0, 0), let the vector field F : R3 → R3 be defined as

F(x, y, z) =
1

(x2 + y2 + z2)3/2
(x i + y j + z k).

(a) Let Sa be the sphere of radius a > 0 centered at the origin in R3. Compute the
flux of F though Sa where Sa is oriented by the outward pointing normal.

(b) Use Gauss’ Divergence Theorem to show that the flux of F through

i. any closed surface S which encloses a solid region not containing the origin
is zero and

ii. any closed surface S which encloses a solid region that contains the origin is
4π (for this case, make use of part (a)).
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Solutions

1. (a) For k = 1, . . . , n,

∂f

∂xk
(x) =

∂

∂xk

√
x21 + . . .+ x2n = 2xk

1

2
(x21 + . . .+ x2n)−1/2 =

xk
‖x‖

.

(b) f is not differentiable at x = 0 because the partial derivatives of f do not exist
at x = 0. Consider, e.g., the difference quotient for the derivative with respect
to x1:

f(t, 0, . . . , 0)− f(0, . . . , 0)

t
=

√
t2 + 02 + . . .+ 02

t
=
|t|
t

which is 1 for t > 0 and −1 for t < 0. So the difference quotient has no limit for
t→ 0.

(c) The directional derivative of f does not exist in any direction v. This is because
the difference quotient

f(tv)− f(0)

t
=

√
(tv1)2 + . . . (tvn)2 − 0

t
=
|t|
√

(v1)2 + . . . (vn)2

t
=
|t|‖v‖
t

is 1 or −1 depending on whether t is positive or negative. So the limit t → 0
does not exist.

(d) By the chain rule we have for k = 1, . . . , n,

∂

∂xk
h(‖x‖) =

∂

∂xk
h(f(x)) = h′(f(x))

∂f(x)

∂xk
= h′(f(x))

xk)

‖x‖
.

Again differentiating with respect to xk gives

∂2

∂x2k
h(‖x‖) =

∂

∂xk
h′(f(x))

xk)

‖x‖

= h′′(f(x))

(
xk)

‖x‖

)2

+ h′(f(x))
∂

∂xk

xk
‖x‖

= h′′(f(x))

(
xk)

‖x‖

)2

+ h′(f(x))
‖x‖ − xk xk

‖x‖

‖x‖2

= h′′(‖x‖) x2k
‖x‖2

+ h′(‖x‖)
‖x‖ − x2k

‖x‖

‖x‖2
,

where in the first equality we again used the chain rule and the product rule,
and in the second equality we used the quotient rule. Summing over k gives the
desired equality.

2. (a) The tangent vector
r′(t) = −a sin ti + a cos t j + bk

has length

‖r′(t)‖ =
√
a2 sin2 t+ a2 cos2 t+ b2 =

√
a2 + b2 .

For t ∈ [0, 2π], the arc length is hence

s(t) =

∫ t

0

‖r′(τ)‖ dτ = t
√
a2 + b2.
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Inverting for t gives

t(s) =
s√

a2 + b2
.

The parametrization by arc length is hence given by

r̃(s) = r(t(s)) = a cos
s√

a2 + b2
i + a sin

s√
a2 + b2

j + b
s√

a2 + b2
k .

(b) The unit tangent vector is given by

T =
dr̃(s)

ds
= − a√

a2 + b2
sin

s√
a2 + b2

i +
a√

a2 + b2
cos

s√
a2 + b2

j + b
1√

a2 + b2
k

which agrees with

T =
1

‖r′(t)‖
r′(t)

for t = s/
√
a2 + b2.

(c) The curvature is given by

κ =

∥∥∥∥dT

ds

∥∥∥∥ =

∥∥∥∥ a

a2 + b2
cos

s√
a2 + b2

i +
a

a2 + b2
sin

s√
a2 + b2

j

∥∥∥∥
=

a

a2 + b2
.

which agrees with ∥∥∥∥dT

dt

∥∥∥∥ 1∥∥dr
dt

∥∥
for t = s/

√
a2 + b2.

3. (a) Let g(x, y, z) = x2 + 2y2 + 3z2. Then the ellipsoid is the level set of g with value
6. The tangent plane of the ellipsoid at the point (1,−1,−1) is perpendicular
to the gradient vector of g at (1,−1,−1). The gradient of g is

∇g(x, y, z) = (2x, 4y, 6z)

giving
∇g(x, y, z) = (2,−4,−6).

The tangent plane is hence given by

(2,−4,−6) · (x− 1, y + 1, z + 1) = 0

which gives
2x− 4y − 6z = 12.

(b) Let f(x, y, z) = x2 + y2 + z2 be the squared distance to the origin. We need to
find the extrema of f under the constraint g(x, y, z) = 6 with g defined as in
part (a). At the extremal points there is according to the theorem on Lagrange
multipliers a λ ∈ R such that λ∇f(x, y, z) = ∇g(x, y, z). Together with the
constraint g(x, y, z) = 6 this gives the following four scalar equations:

λfx(x, y, z) = gx(x, y, z),
λfy(x, y, z) = gy(x, y, z),
λfz(x, y, z) = gz(x, y, z),
g(x, y, z) = 6
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i.e.
2λx = 2x,
2λy = 4y,
2λz = 6z,

x2 + 2y2 + 3z2 = 6.

This is equivalent to

x = 0 or λ = 1,
y = 0 or λ = 2,
z = 0 or λ = 3,

x2 + 2y2 + 3z2 = 6.

As λ needs to be unique the only possible solutions are

i. x = y = 0, λ = 3, z = ±
√

2,

ii. x = z = 0, λ = 2, y = ±
√

3,

iii. y = z = 0, λ = 1, x = ±
√

6,

We have f(0, 0,±
√

2) = 2, f(0,±
√

3, 0) = 3 and f(±
√

6, 0, 0) = 6. So the dis-
tance is minimal at (x, y, z) = (0, 0,±

√
2) and maximal at (x, y, z) = (±

√
6, 0, 0).

4. (a) To show that F is conservative we show that the curl of F is vanishing:

curl F(x, y, z) =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

2xy + z3 x2 3xz2

∣∣∣∣∣∣
=

(
∂y3xz

2 − ∂zx2
)
i−
(
∂x3xz

2 − ∂z(2xy + z3)
)
j +
(
∂xx

2 − ∂y(2xy + z3)
)
k

= 0 i− (3z2 − 3z2) j + (2x− 2x)k

= 0

(b) Let f denote the potential function. Then f satisfies the equations

fx = 2xy + z3, (1)

fy = x2, (2)

fz = 3xz2. (3)

Integrating the first equation with respect to x gives

f(x, y, z) = x2y + xz3 + h(y, z),

where h(y, z) is a integration constant which can dependent on y and z. Differ-
entiating with respect to y and using Equation (2) yields

x2 + hy(y, z) = x2,

i.e., hy(y, z) = 0. So h does not dependent on y and is hence of the form h(y, z) =
g(z) for some function g. So f(x, y, z) = x2y + xz3 + g(z). Differentiating with
respect to z and using Equation (3) yields

3xz2 + g′(z) = 3xz2

which gives g′(z) = 0, i.e. g is constant. So the potential function is

f(x, y, z) = x2y + xz3 + c

with c ∈ R.
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(c) According to the Fundamental Theorem for Line Integrals the line integral is
given by f(3, 1, 4) − f(1,−2, 1), where f is the potential function computed in
part (b). As f(3, 1, 4) = 201 and f(1,−2, 1) = −1 the line integral is 202.

5. To Verify Stokes’ Theorem we need to show that∫∫
S

∇× F · dS =

∫
∂S

F · ds. (4)

The surface S is the part of a downward open paraboloid having z ≥ 0. Its boundary
∂S is given the circle x2 + y2 = 1, z = 0. This circle has the parametrization

r(t) = cos t i + sin t j + 0k

with t ∈ [0, 2π]. As S is oriented by the upward normal the parametrization r gives
an orientation of ∂S which is consistent with that of S. The right hand side of
Equation (4) is∫

∂S

F · ds =

∫ 2π

0

F(r(t)) · r′(t) dt

=

∫ 2π

0

(0 i + 0 j + (cos2 t+ sin2 t)k) · (− sin t i + cos t j + 0k) dt = 0.

In order to compute the left hand side of Equation (4) we use the parametrization
X(s, t) = s i + t j + 1

5
(1− s2 − t2)k with (s, t) ∈ D = {(s, t) ∈ R2 | s2 + t2 ≤ 1}. The

corresponding tangent vectors are

∂X

∂s
= i− 2

5
sk

and
∂X

∂t
= j− 2

5
tk.

This gives the normal vector

N(s, t) =
∂X

∂s
× ∂X

∂t
=

∣∣∣∣∣∣
i j k
1 0 −2

5
s

0 1 −2
5
t

∣∣∣∣∣∣ =
2

5
s i +

2

5
t j + 1k

which is consistent with orientation of S by the upward normal. The curl of F is

∇× F(x, y, z) =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
xz yz x2 + y2

∣∣∣∣∣∣ = y i− x j.

As ∇× F(x, y, z) ·N = 0 the right hand side of Equation (4) vanishes.

6. (a) An outward pointing unit normal vector of the sphere Sa at the point (x, y, z) is
given by

n(x, y, z) =
1

a
(x i + y j + z k).
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The flux integral is∫∫
Sa

F · n dS =
1

a

∫∫
Sa

1

(x2 + y2 + z2)3/2
(x i + y j + z k) · (x i + y j + z k) dS

=
1

a

∫∫
Sa

1

a3
a2 dS

= 4π,

where we used that the surface area of a sphere of radius a is 4πa2.

(b) At (x, y, z) 6= 0 the divergence of F is

∇ · F(x, y, z) = ∂x
x

(x2 + y2 + z2)3/2
+ ∂y

y

(x2 + y2 + z2)3/2
+ ∂z

z

(x2 + y2 + z2)3/2

=
(x2 + y2 + z2)3/2 − 3x2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
+

(x2 + y2 + z2)3/2 − 3y2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
+

(x2 + y2 + z2)3/2 − 3z2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3

= 0.

Let the solid region enclosed by S be denoted as D. If the origin is not contained
in D then we get for the flux through S from Gauss’ Theorem∫∫

S

F · dS =

∫∫∫
D

∇ · F dV = 0.

If D contains the origin then define a little ball of radius a around the origin
with a sufficiently small such that the ball is contained in D. Now consider the
modified region D′ given by D minus the ball. The boundary of D′ is S minus
the sphere Sa. Applying Gauss’ Theorem to the D′ gives

0 =

∫∫∫
D′
∇ · F dV =

∫∫
S

F · dS−
∫∫

Sa

F · dS,

where the minus in front of the second term comes from the fact that in order to
apply Gauss’ Theorem we need to orient the sphere Sa opposite to the orientation
used in part (a). Using the result for the flux through Sa in part (a) we find∫∫

S

F · dS = 4π.
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