Exam Calculus 2

30 March 2016, 14:00-17:00

The exam consists of 6 problems. You have 180 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. $\left[3+\mathbf{4}+\mathbf{4}+\mathbf{4}\right.$ Points.] Let the map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined as

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \mapsto\|\mathbf{x}\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

(a) Compute the partial derivatives of f at $\left(x_{1}, \ldots, x_{n}\right) \neq(0, \ldots, 0)$.
(b) Show that f is not differentiable at $\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)$.
(c) In which directions $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n},\|\boldsymbol{v}\|=1$, do the directional derivatives of f exist at $\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)$?
(d) The Laplacian of a C^{2} function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is denoted as $\nabla^{2} g$ and defined as

$$
\nabla^{2} g=\frac{\partial^{2} g}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2} g}{\partial x_{n}^{2}}
$$

Suppose that $g\left(x_{1}, \ldots, x_{n}\right)=h(\|\mathbf{x}\|)$ for some C^{2} function $h: \mathbb{R} \rightarrow \mathbb{R}$. Show that for $\left(x_{1}, \ldots, x_{n}\right) \neq(0, \ldots, 0)$, the Laplacian of such a function g is given by

$$
\nabla^{2} g\left(x_{1}, \ldots, x_{n}\right)=\frac{n-1}{\|\mathbf{x}\|} h^{\prime}(\|\mathbf{x}\|)+h^{\prime \prime}(\|\mathbf{x}\|) .
$$

2. $\left[\mathbf{7}+\mathbf{3}+\mathbf{5}\right.$ Points.] Consider the curve parametrized by $\mathbf{r}:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ with

$$
\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+b t \mathbf{k}
$$

where a and b are positive constants.
(a) Determine the parametrization by arc length.
(b) For each point on the curve, determine a unit tangent vector.
(c) At each point on the curve, determine the curvature of the curve.
3. [5+10 Points.] Consider the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=6$.
(a) Compute the tangent plane at the point $(x, y, z)=(1,-1,-1)$.
(b) Use the Method of Lagrange Multipliers to find the points on the ellipsoid which have minimal and maximal distance to the origin.

- please turn over -

4. $[5+7+3$ Points. $]$

Let the vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as $\mathbf{F}(x, y, z)=\left(2 x y+z^{3}\right) \mathbf{i}+x^{2} \mathbf{j}+3 x z^{2} \mathbf{k}$.
(a) Show that \mathbf{F} is conservative.
(b) Determine a potential function for \mathbf{F}.
(c) Compute the line integral of \mathbf{F} along the straight line segment from the point $(1,-2,1)$ to the point $(3,1,4)$.

5. [15 Points.]

Verify Stokes' Theorem for the surface S defined as $x^{2}+y^{2}+5 z=1, z \geq 0$, oriented by the upward normal and the vector field $\mathbf{F}(x, y, z)=x z \mathbf{i}+y z \mathbf{j}+\left(x^{2}+y^{2}\right) \mathbf{k}$.
6. $[7+8$ Points. $]$

For $(x, y, z) \neq(0,0,0)$, let the vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as

$$
\mathbf{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})
$$

(a) Let S_{a} be the sphere of radius $a>0$ centered at the origin in \mathbb{R}^{3}. Compute the flux of \mathbf{F} though S_{a} where S_{a} is oriented by the outward pointing normal.
(b) Use Gauss' Divergence Theorem to show that the flux of \mathbf{F} through
i. any closed surface S which encloses a solid region not containing the origin is zero and
ii. any closed surface S which encloses a solid region that contains the origin is 4π (for this case, make use of part (a)).

Solutions

1. (a) For $k=1, \ldots, n$,

$$
\frac{\partial f}{\partial x_{k}}(\mathbf{x})=\frac{\partial}{\partial x_{k}} \sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}=2 x_{k} \frac{1}{2}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{-1 / 2}=\frac{x_{k}}{\|\mathbf{x}\|}
$$

(b) f is not differentiable at $\mathbf{x}=0$ because the partial derivatives of f do not exist at $\mathbf{x}=0$. Consider, e.g., the difference quotient for the derivative with respect to x_{1} :

$$
\frac{f(t, 0, \ldots, 0)-f(0, \ldots, 0)}{t}=\frac{\sqrt{t^{2}+0^{2}+\ldots+0^{2}}}{t}=\frac{|t|}{t}
$$

which is 1 for $t>0$ and -1 for $t<0$. So the difference quotient has no limit for $t \rightarrow 0$.
(c) The directional derivative of f does not exist in any direction \boldsymbol{v}. This is because the difference quotient

$$
\frac{f(t \boldsymbol{v})-f(0)}{t}=\frac{\sqrt{\left(t v_{1}\right)^{2}+\ldots\left(t v_{n}\right)^{2}}-0}{t}=\frac{|t| \sqrt{\left(v_{1}\right)^{2}+\ldots\left(v_{n}\right)^{2}}}{t}=\frac{|t|\|\boldsymbol{v}\|}{t}
$$

is 1 or -1 depending on whether t is positive or negative. So the limit $t \rightarrow 0$ does not exist.
(d) By the chain rule we have for $k=1, \ldots, n$,

$$
\frac{\partial}{\partial x_{k}} h(\|\mathbf{x}\|)=\frac{\partial}{\partial x_{k}} h(f(\mathbf{x}))=h^{\prime}(f(\mathbf{x})) \frac{\partial f(\mathbf{x})}{\partial x_{k}}=h^{\prime}(f(\mathbf{x})) \frac{\left.x_{k}\right)}{\|\mathbf{x}\|}
$$

Again differentiating with respect to x_{k} gives

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x_{k}^{2}} h(\|\mathbf{x}\|) & =\frac{\partial}{\partial x_{k}} h^{\prime}(f(\mathbf{x})) \frac{\left.x_{k}\right)}{\|\mathbf{x}\|} \\
& =h^{\prime \prime}(f(\mathbf{x}))\left(\frac{\left.x_{k}\right)}{\|\mathbf{x}\|}\right)^{2}+h^{\prime}(f(\mathbf{x})) \frac{\partial}{\partial x_{k}} \frac{x_{k}}{\|\mathbf{x}\|} \\
& =h^{\prime \prime}(f(\mathbf{x}))\left(\frac{\left.x_{k}\right)}{\|\mathbf{x}\|}\right)^{2}+h^{\prime}(f(\mathbf{x})) \frac{\|\mathbf{x}\|-x_{k} \frac{x_{k}}{\|\mathbf{x}\|}}{\|\mathbf{x}\|^{2}} \\
& =h^{\prime \prime}(\|\mathbf{x}\|) \frac{x_{k}^{2}}{\|\mathbf{x}\|^{2}}+h^{\prime}(\|\mathbf{x}\|) \frac{\|\mathbf{x}\|-\frac{x_{k}^{2}}{\|\mathbf{x}\|}}{\|\mathbf{x}\|^{2}}
\end{aligned}
$$

where in the first equality we again used the chain rule and the product rule, and in the second equality we used the quotient rule. Summing over k gives the desired equality.
2. (a) The tangent vector

$$
\mathbf{r}^{\prime}(t)=-a \sin t \mathbf{i}+a \cos t \mathbf{j}+b \mathbf{k}
$$

has length

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}}=\sqrt{a^{2}+b^{2}}
$$

For $t \in[0,2 \pi]$, the arc length is hence

$$
s(t)=\int_{0}^{t}\left\|\mathbf{r}^{\prime}(\tau)\right\| \mathrm{d} \tau=t \sqrt{a^{2}+b^{2}}
$$

Inverting for t gives

$$
t(s)=\frac{s}{\sqrt{a^{2}+b^{2}}}
$$

The parametrization by arc length is hence given by

$$
\tilde{\mathbf{r}}(s)=\mathbf{r}(t(s))=a \cos \frac{s}{\sqrt{a^{2}+b^{2}}} \mathbf{i}+a \sin \frac{s}{\sqrt{a^{2}+b^{2}}} \mathbf{j}+b \frac{s}{\sqrt{a^{2}+b^{2}}} \mathbf{k}
$$

(b) The unit tangent vector is given by
$\mathbf{T}=\frac{\mathrm{d} \tilde{\mathbf{r}}(s)}{\mathrm{d} s}=-\frac{a}{\sqrt{a^{2}+b^{2}}} \sin \frac{s}{\sqrt{a^{2}+b^{2}}} \mathbf{i}+\frac{a}{\sqrt{a^{2}+b^{2}}} \cos \frac{s}{\sqrt{a^{2}+b^{2}}} \mathbf{j}+b \frac{1}{\sqrt{a^{2}+b^{2}}} \mathbf{k}$
which agrees with

$$
\mathbf{T}=\frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|} \mathbf{r}^{\prime}(t)
$$

for $t=s / \sqrt{a^{2}+b^{2}}$.
(c) The curvature is given by

$$
\begin{aligned}
\kappa & =\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}\right\|=\left\|\frac{a}{a^{2}+b^{2}} \cos \frac{s}{\sqrt{a^{2}+b^{2}}} \mathbf{i}+\frac{a}{a^{2}+b^{2}} \sin \frac{s}{\sqrt{a^{2}+b^{2}}} \mathbf{j}\right\| \\
& =\frac{a}{a^{2}+b^{2}} .
\end{aligned}
$$

which agrees with

$$
\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} t}\right\| \frac{1}{\left\|\frac{\mathrm{dr}}{\mathrm{~d} t}\right\|}
$$

for $t=s / \sqrt{a^{2}+b^{2}}$.
3. (a) Let $g(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$. Then the ellipsoid is the level set of g with value 6. The tangent plane of the ellipsoid at the point $(1,-1,-1)$ is perpendicular to the gradient vector of g at $(1,-1,-1)$. The gradient of g is

$$
\nabla g(x, y, z)=(2 x, 4 y, 6 z)
$$

giving

$$
\nabla g(x, y, z)=(2,-4,-6)
$$

The tangent plane is hence given by

$$
(2,-4,-6) \cdot(x-1, y+1, z+1)=0
$$

which gives

$$
2 x-4 y-6 z=12
$$

(b) Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ be the squared distance to the origin. We need to find the extrema of f under the constraint $g(x, y, z)=6$ with g defined as in part (a). At the extremal points there is according to the theorem on Lagrange multipliers a $\lambda \in \mathbb{R}$ such that $\lambda \nabla f(x, y, z)=\nabla g(x, y, z)$. Together with the constraint $g(x, y, z)=6$ this gives the following four scalar equations:

$$
\begin{aligned}
\lambda f_{x}(x, y, z) & =g_{x}(x, y, z) \\
\lambda f_{y}(x, y, z) & =g_{y}(x, y, z), \\
\lambda f_{z}(x, y, z) & =g_{z}(x, y, z), \\
g(x, y, z) & =6
\end{aligned}
$$

i.e.

$$
\begin{aligned}
2 \lambda x & =2 x, \\
2 \lambda y & =4 y \\
2 \lambda z & =6 z \\
x^{2}+2 y^{2}+3 z^{2} & =6
\end{aligned}
$$

This is equivalent to

$$
\begin{array}{rcc}
x=0 & \text { or } & \lambda=1, \\
y=0 & \text { or } & \lambda=2, \\
z=0 & \text { or } & \lambda=3, \\
x^{2}+2 y^{2}+3 z^{2} & = & 6 .
\end{array}
$$

As λ needs to be unique the only possible solutions are
i. $x=y=0, \lambda=3, z= \pm \sqrt{2}$,
ii. $x=z=0, \lambda=2, y= \pm \sqrt{3}$,
iii. $y=z=0, \lambda=1, x= \pm \sqrt{6}$,

We have $f(0,0, \pm \sqrt{2})=2, f(0, \pm \sqrt{3}, 0)=3$ and $f(\pm \sqrt{6}, 0,0)=6$. So the distance is minimal at $(x, y, z)=(0,0, \pm \sqrt{2})$ and maximal at $(x, y, z)=(\pm \sqrt{6}, 0,0)$.
4. (a) To show that \mathbf{F} is conservative we show that the curl of \mathbf{F} is vanishing:

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}(x, y, z) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x y+z^{3} & x^{2} & 3 x z^{2}
\end{array}\right| \\
& =\left(\partial_{y} 3 x z^{2}-\partial_{z} x^{2}\right) \mathbf{i}-\left(\partial_{x} 3 x z^{2}-\partial_{z}\left(2 x y+z^{3}\right)\right) \mathbf{j}+\left(\partial_{x} x^{2}-\partial_{y}\left(2 x y+z^{3}\right)\right) \mathbf{k} \\
& =0 \mathbf{i}-\left(3 z^{2}-3 z^{2}\right) \mathbf{j}+(2 x-2 x) \mathbf{k} \\
& =0
\end{aligned}
$$

(b) Let f denote the potential function. Then f satisfies the equations

$$
\begin{align*}
f_{x} & =2 x y+z^{3} \tag{1}\\
f_{y} & =x^{2} \tag{2}\\
f_{z} & =3 x z^{2} \tag{3}
\end{align*}
$$

Integrating the first equation with respect to x gives

$$
f(x, y, z)=x^{2} y+x z^{3}+h(y, z)
$$

where $h(y, z)$ is a integration constant which can dependent on y and z. Differentiating with respect to y and using Equation (2) yields

$$
x^{2}+h_{y}(y, z)=x^{2}
$$

i.e., $h_{y}(y, z)=0$. So h does not dependent on y and is hence of the form $h(y, z)=$ $g(z)$ for some function g. So $f(x, y, z)=x^{2} y+x z^{3}+g(z)$. Differentiating with respect to z and using Equation (3) yields

$$
3 x z^{2}+g^{\prime}(z)=3 x z^{2}
$$

which gives $g^{\prime}(z)=0$, i.e. g is constant. So the potential function is

$$
f(x, y, z)=x^{2} y+x z^{3}+c
$$

with $c \in \mathbb{R}$.
(c) According to the Fundamental Theorem for Line Integrals the line integral is given by $f(3,1,4)-f(1,-2,1)$, where f is the potential function computed in part (b). As $f(3,1,4)=201$ and $f(1,-2,1)=-1$ the line integral is 202 .
5. To Verify Stokes' Theorem we need to show that

$$
\begin{equation*}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{s} \tag{4}
\end{equation*}
$$

The surface S is the part of a downward open paraboloid having $z \geq 0$. Its boundary ∂S is given the circle $x^{2}+y^{2}=1, z=0$. This circle has the parametrization

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+0 \mathbf{k}
$$

with $t \in[0,2 \pi]$. As S is oriented by the upward normal the parametrization \mathbf{r} gives an orientation of ∂S which is consistent with that of S. The right hand side of Equation (4) is

$$
\begin{aligned}
\int_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{s} & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t \\
& =\int_{0}^{2 \pi}\left(0 \mathbf{i}+0 \mathbf{j}+\left(\cos ^{2} t+\sin ^{2} t\right) \mathbf{k}\right) \cdot(-\sin t \mathbf{i}+\cos t \mathbf{j}+0 \mathbf{k}) \mathrm{d} t=0
\end{aligned}
$$

In order to compute the left hand side of Equation (4) we use the parametrization $X(s, t)=s \mathbf{i}+t \mathbf{j}+\frac{1}{5}\left(1-s^{2}-t^{2}\right) \mathbf{k}$ with $(s, t) \in D=\left\{(s, t) \in \mathbb{R}^{2} \mid s^{2}+t^{2} \leq 1\right\}$. The corresponding tangent vectors are

$$
\frac{\partial X}{\partial s}=\mathbf{i}-\frac{2}{5} s \mathbf{k}
$$

and

$$
\frac{\partial X}{\partial t}=\mathbf{j}-\frac{2}{5} t \mathbf{k}
$$

This gives the normal vector

$$
\mathbf{N}(s, t)=\frac{\partial X}{\partial s} \times \frac{\partial X}{\partial t}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & -\frac{2}{5} s \\
0 & 1 & -\frac{2}{5} t
\end{array}\right|=\frac{2}{5} s \mathbf{i}+\frac{2}{5} t \mathbf{j}+1 \mathbf{k}
$$

which is consistent with orientation of S by the upward normal. The curl of \mathbf{F} is

$$
\nabla \times \mathbf{F}(x, y, z)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & y z & x^{2}+y^{2}
\end{array}\right|=y \mathbf{i}-x \mathbf{j} .
$$

As $\nabla \times \mathbf{F}(x, y, z) \cdot \mathbf{N}=0$ the right hand side of Equation (4) vanishes.
6. (a) An outward pointing unit normal vector of the sphere S_{a} at the point (x, y, z) is given by

$$
\mathbf{n}(x, y, z)=\frac{1}{a}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) .
$$

The flux integral is

$$
\begin{aligned}
\iint_{S_{a}} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S & =\frac{1}{a} \iint_{S_{a}} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \mathrm{d} S \\
& =\frac{1}{a} \iint_{S_{a}} \frac{1}{a^{3}} a^{2} \mathrm{~d} S \\
& =4 \pi
\end{aligned}
$$

where we used that the surface area of a sphere of radius a is $4 \pi a^{2}$.
(b) At $(x, y, z) \neq 0$ the divergence of \mathbf{F} is

$$
\begin{aligned}
\nabla \cdot \mathbf{F}(x, y, z)= & \partial_{x} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\partial_{y} \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\partial_{z} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
= & \frac{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}-3 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}+ \\
& \frac{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}-3 y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}+ \\
& \frac{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}-3 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}} \\
= & 0 .
\end{aligned}
$$

Let the solid region enclosed by S be denoted as D. If the origin is not contained in D then we get for the flux through S from Gauss' Theorem

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} \mathrm{~d} V=0 .
$$

If D contains the origin then define a little ball of radius a around the origin with a sufficiently small such that the ball is contained in D. Now consider the modified region D^{\prime} given by D minus the ball. The boundary of D^{\prime} is S minus the sphere S_{a}. Applying Gauss' Theorem to the D^{\prime} gives

$$
0=\iiint_{D^{\prime}} \nabla \cdot \mathbf{F} \mathrm{d} V=\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}-\iint_{S_{a}} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}
$$

where the minus in front of the second term comes from the fact that in order to apply Gauss' Theorem we need to orient the sphere S_{a} opposite to the orientation used in part (a). Using the result for the flux through S_{a} in part (a) we find

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=4 \pi
$$

